
FORMATION OF FIBERS FROM TUBULAR 

SEMIFINISHED PRODUCTS 

V. L. Kolpashchikov, O. G. Martynenko, 
V. G. Tsymbal, and A. I. Shnip 

UDC 532.51:532.522 

Steady-state regimes of fiber formation from a tubular semifinished product are 
numerically modeled. The dependence of the form of the stream in the deforma- 
tion zone on process parameters is obtained. 

The need to study mathematical models of fiber formation stems from the requirements 
of modern technologies used for the production of chemical and optical fibers. 

Such methods of fiber formation as drawing from a solid semiproduct or through a die 
are widely used. However, due to the expanding use of fluoride glasses, the method of pro- 
ducing fibers from a tubular semifinished product [i] is receiving increasing attention. 
Depending on the parameters of the process, this method is characterized by the following 
cases: absence of collapse of the capillary; collapse; irregular collapse. The latter is 
due to the nonsteadiness of the process, which results in the formation of microscopic 
pores in the center of the fiber. These pores are located along the fiber axis. The present 
article is devoted to study of the effect of instability on collapse of the fiber material. 

We will examine steady-state regimes of fiber formation from tubular semifinished pro- 
ducts and establish the main parameters of the process that affect collapse of the capillary. 
We distinguish two regions in the deformation zone. In the first region (from the beginning 
of deformation to the point of collapse), the fiber is still a capillary. In the second 
region (from the point of collapse to the end of the deformation zone), it is already solid. 
The viscosity of the semifinished product (SP) and the finished microcapillary or fiber is 
assumed to be infinitely large and is a known function of temperature. The temperature 
distribution is given. The liquid is isotropic and its motion is assumed to be axisymmetric. 
Considering that heat transfer to the SP inside the heater and subsequent cooling of the 
fiber occur by radiation and that the mean free path of the radiation exceeds the transverse 
dimension of the stream, we can assume the temperature of the liquid to be constant at all 
points of the cross section of the stream. This means that the distribution of temperature 
and, thus, viscosity depend only on the longitudinal coordinate and is described by an 
assigned function n(z). It is clear from the formulation of the problem that N(z) is a 
smooth function which approaches infinity as z + • 

The main approximations with which the mathematical model of the process is formulated 
are the assumptions of a prescribed temperature distribution and the smallness of the angle 
of inclination of the boundaries of the stream (transition from semifinished product to 
finished fiber). 

Here, we determine the dependence of the form of the stream in the deformation zone on 
the parameters of the process. 

We proceeded on the basis of the mathematical model proposed in [2]. The process is 
described by the Navier--Stokes equations and continuity equation. We assigned the thickness 
of the wall h 0 (Fig. i), the mean radius of the tube r0, the feed of the tube u0, and the 
rate of extraction of the finished product u~. The solution takes into account surface ten- 
sion o and the pressure gradient Ap = Pl - P2 between the channel and the environment; both 
quantities are assumed to be independent of the longitudinal coordinate z. 

In light of the above, the dynamics of the process in the first region, i.e. from the 
beginning of deformation to the point of collapse, is described by the following system of 
equations with boundary conditions: 
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Fig. i. Sketch of the 
stream in the deforma- 
tion zone. 

~]du/dz - -  czu = - -  a/3h; ( 1 ) 

2adh/dz  + hdu/dz crhl (TAp/2q) [ 1 ~ ~ - -  - -  (ht,4r")]; ( 2 )  

F 1 ~  = ~; (3 )  
u I~=_~ = u0; 71 . . . .  = r-0; h Iz=_~ i~0, (4 )  

w h e r e  a a n d  ~ a r e  unknown c o n s t a n t s .  We f i n d  f r o m  Eq.  ( 3 )  w i t h  z = - ~  a n d  f r o m  ( 4 )  t h a t  
= r 0 h 0 u 0  . G i v e n  t h e  c o n d i t i o n s  o f  o u r  p r o b l e m ,  we c a n n o t  a s s u m e  t h a t  t h e  f i b e r  h a s  t h i n  

w a l l s .  T h i s  w o u l d  a l l o w  u s  t o  i g n o r e  t h e  q u a n t i t y  ( h / ~ )  ~ i n  ( 2 )  r e l a t i v e  t o  u n i t y  ( a s  was  
d o n e  i n  [ 2 ] ) ,  s i n c e  t h e  w a l l  t h i c k n e s s  h a n d  t h e  mean r a d i u s  r a r e  o f  t h e  same o r d e r  o f  mag-  
n i t u d e  n e a r  t h e  p o i n t  o f  c o l l a p s e  o f  t h e  m i c r o c a p i l l a r y .  T h u s ,  b e l o w  we w i l l  s o l v e  t h e  p r o b -  
l em i n  t h e  c o m p l e t e  f o r m u l a t i o n .  

A f t e r  c h a n g i n g  o v e r  t o  d i m e n s i o n l e s s  v a r i a b l e s :  

z* = z/Z; H* = h/Vh070; ~* = -?lV~o7o; u* = .I.o; ~* = ~oI~, ( 5 )  

w h e r e  t h e  e f f e c t i v e  l e n g t h  o f  t h e  h e a t i n g  z o n e  s i s  d e t e r m i n e d  b y  t h e  e q u a l i t y  

Zl~0 = j dzlq (z), (6 )  

t h e  f o l l o w i n g  d i m e n s i o n l e s s  p a r a m e t e r s  e n t e r  i n t o  t h e  e q u a t i o n s  a n d  b o u n d a r y  c o n d i t i o n s  

U~ = u=/uo; W = l n U ~ ;  7 : czl/qo; ( 7 )  

Q : ~l/~]oUo]flhoro; P : :  Apl/2~loUo. 

I n  t h e  d i m e n s i o n l e s s  v a r i a b l e s  ( w i t h  t h e  s u p e r s c r i p t  * o m i t t e d ) ,  E q s .  ( 1 - 3 )  a n d  b o u n d a r y  
c o n d i t i o n s  ( 4 )  a r e  w r i t t e n  i n  t h e  f o r m  

( l / R )  dR /dS  =- - -  (7/2 + Q/3 - -  P R  z [ 1 - -  1/4R~U2]/2); ( 8 )  

(1/U) d U N S  = (7 - -  QR/3); ( 9 )  

HUR = l; ( l o )  

H Is=0 = ; R; R Is=0 = V ( ~ ) ;  u Is=0 = I, ( 11 ) 

where Q is the ratio of surface tension to the viscous forces; the quantity P characterizes 
the ratio of the pressure gradient between the channel and the environment to the viscous 
forces; 
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Fig. 2 Fig. 3 

Fig. 2. Forms of hollow and solid streams with different 
process parameters: a) Q = 10,06231; 7 = 12.35771; K = 
0.2; P = i; W = 11.51293; b) Q = 10.06231; y = 9.802176; 
K = 0.2; P = 5; W = 4.60517; c) Q = 10.06231; 7 = 

12.21116; K = 0.2; P = 0; W = 11.51293; d) Q = 10.06231; 
7 = 12.10252; K = 0.2; P = -i; W = 11.51293; e) Q = 
10.06231; 7 = 11.99141; K = 0,2; P = -2; W = 11.51293; 
f) Q = 10.06231; ~ = 11.90251; K = 0.2; P = -3; W = 
11.51293. 

Fig. 3. Dependence of the dimensionless coordinate of 

the point of collapse on the pressure parameter P for 
Q = 10,06231; K = 0.2; W = 11.51293, 

s =  j ~(Dd~. (12) 

H e r e ,  t h e  r a n g e  ( - -~;  +~)  o f  Z c o r r e s p o n d s  t o  t h e  r a n g e  (0 ,  1) o f  S; p (~ )  i s  t h e  d i m e n s i o n -  
l e s s  d i s t r i b u t i o n  o f  t h e  y i e l d i n g  o f  t h e  m a t e r i a l ;  K i s  t h e  r a t i o  o f  t h e  t h i c k n e s s  o f  t h e  
w a l l  o f  t h e  t u b e  t o  i t s  mean r a d i u s ,  r e f e r r e d  t o  as  t h e  c a p i l l a r i t y  c o e f f i c i e n t  o f  t h e  semi -  
f i n i s h e d  p r o d u c t .  

Thus ,  in  t h e  f i r s t  r e g i o n  - where  S changes  f rom S = 0 t o  t h e  c a p i l l a r y  c o l l a p s e  p o i n t  
S c o l ,  t h e  p r o c e s s  i s  d e s c r i b e d  by sy s t em  ( 8 - 1 0 )  w i t h  b o u n d a r y  c o n d i t i o n s  ( 1 1 ) .  In  t h e  
s econd  r e g i o n  - where  t h e  f i b e r  i s  a l r e a d y  s o l i d ,  i . e .  f rom S = Sco 1 t o  S = 1 - t h e  mean 
r a d i u s  i s  e q u a l  t o  

R(S) : H~(S;2; S c o l < ~ S <  ~ 1. (13) 

Also, since the fiber is already solid, the pressure gradient between the channel and the 
environment is equal to zero. Thus, the dimensionless parameter P should also be equal to 
zero. 

For the second region, the initial system of equations for the mean radius R and the 
longitudinal coordinate U appear as follows in dimensionless form: 

(l/R) d R / d S  = - -  (7/2 + QR/3);  (14)  

R2U ~ 1/2. (15)  
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The boundary condition for system (14-15) is imposed at the point S = Sco I and is found 
from the solution of the problem in the first region. 

To determine the parameter y, we use the auxiliary condition UIS= l = exp W, where W is 
the natural logarithm of the ratio of the rate of fiber extraction to the feed of the semi- 
finished product. 

The problem was solved numerically. The parameter ~ was found by the method of sub- 
division of the interval into polynomials. In each iteration, i.e. with a fixed value of y, 
system (8-10) with boundary conditions (ii) was solving by the Hemming method. We found the 
coordinate of the collapse point (if it existed) from condition (13). The values of mean 
radius and the longitudinal velocity at the collapse point then served as boundary conditions 
for system (14-15), and we used them to find the mean radius R and the longitudinal velocity 
U of the solid fiber from the collapse point to the end of the deformation zone (S = i). 
This determination was made in dimensionless form. 

The results of the calculations show that there are two characteristic regimes of fiber 
formation. Capillary collapse occurs in the first regime but not in the second. Typical 
profiles of the stream in the pulling region are shown in Fig. 2a and b, for the case when 
the fiber does not collapse completely and in Fig. 2c-f for the case when it does. 

It can be seen that with fixed values for the capillarity coefficient of the semi- 
finished product K, the surface tension parameter Q, and the fiber extraction parameter W, 
the process is significantly influenced by the parameter P characterizing the pressure gra- 
dient between the channel and the environment. Figure 3 shows the dependence of the dimen- 
sionless coordinate of the collapse point on pressure P. It is evident that a small change 
in the dimensionless pressure parameter P from 0 to 1 is accompanied by a substantial change 
in the coordinate of the collapse point - from Sco I = 0.46 to the end of the deformation 
zone S = i. The capillary does not collapse at P = i. It is significant that variation of 
the pressure parameter P from -5 to 0 also does not greatly affect the coordinate of the 
collapse point. Here, the point is located in the upper half of the pulling region, i.e. 
above the point of the temperature maximum. 

The case in which collapse does not occur is interesting. It is shown in Fig. 2b. 
With a low rate of fiber extraction W = in (i00) and P = 5, we find that the capillarity 
coefficient K of the semifinished product changes from 0.2 to 0.34 at the outlet of the 
deformation zone. This case models the drawing of load-bearing small-diameter pipes from 
large semifinished products. The result obtained here shows that to control the degree of 
collapse, it is necessary to use a pressure gradient. 

The solutions presented in this article to the steady-state problem can easily be 
generalized to the case of examination of the process with allowance for equations expres- 
sing the energy and the weight of the fiber being formed. 

NOTATION 

z, Z, dimensional and dimensionless longitudinal coordinate; u~, U~, dimensional and 
dimensionless rate of extraction of the finished production; q, viscosity; Do, minimum vis- 
cosity; p, dimensionless distribution of yielding; h0, thickness of the wall of the semi- 
finished product; r0, mean radius of the semifinished product; u 0, feed of the semifinished 
product; o, surface tension; ~, effective length of the heating zone; Ap = Pz - P2, pressure 
gradient between the channel and the environment; Q=~I/~ouo?ho--~o , dimensionless parameter 

characterizing the ratio of surface tension to viscous forces; P=hpf/2~ouo , dimensionless 
pressure parameter; H, dimensionless wall thickness; R, dimensionless mean radius; U, dimen- 
sionless longitudinal velocity; K, capillarity coefficient of the semifinished product; 
W = in U~, extraction parameter. 
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